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ABSTRACT

Twelve alloys were selected and tested in sheet metal form to compare
their suitability for use as transpiration cooled gas turbine blade
materials. The alloys were N 155, TD nickel, TD nickel-chromium, Bendel
65-35, Chromel A, DH 242, GE 1541, Hoskins 875, RA 333, Hastelloy X,
Udimet 500, and Haynes 25. Screening tests consisted of cyclic furnace
oxidation at 1400, 1600, 1800, 2000, 2100, and 2200°F for 4, 16, 64,
100, 200, 300, 400, 500, and 600 hours exposure time. Total oxidation
and spalling were determined for each specimen along with variation in
room temperature mechanical properties and microstructure. Electron
beam welding feasibility was also investigated. Three "best-compromise"
alloys were selected for later testing as wires to determine suitability
for manufacturing space-wound or woven porous transpiration cooling
materials.
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INVESTIGATION OF OXIDATION RESISTANT MATERIALS
FOR TRANSPIRATION COOLED GAS TURBINE BLADES

Part One
SHEET SPECIMEN SCREENING TESTS

by Fred W. Colel, James B. Padden?, and Andrew R. Spencer3

THE BENDIX CORPORATION
Filter Division

1 SUMMARY

Twelve alloys were selected and tested as sheet metal specimens to compare
their suitability for use in transpiration cooled gas turbine blade materials.
The object of this investigation was to provide engineering data for specifying
metal alloys used in space-wound (Poroloy) and woven wire (Rigimesh, Poroplate)
porous structures. Alloys chosen from 56 candidate alloys were:

1. N I55. ¢« ¢ ¢ ¢ o 4 4w ¢ & « o« o o« « 21Cr-20Ni-20C0~3Mo-2.5W~Fe
2. TDmnickel. . . . . . . « . . . « « 2ThOy-Ni

3. TD nickel-chromium . . . . . « . . 2Th02-20Cr-Ni

4, Bendel 65-35 . . . . . + + « « « . 3 spinel-35Cr-Ni

5. Chromel A, . + & ¢« ¢« « « &+ &« « o «» 20Cr-Ni

6. DH 242 . . . v ¢« « & & « s « o &« « 20Cr-1Cb-Ni

7. GE 1541, . . . + & ¢« 4 + « « o & o 15Cr-4A1-1Y-Fe

8. Hoskins 875. . . . +« . + « « s « « 23Cr-6Al-Fe

9. RA 333 . . . . . . 4 ¢ o o s = o » 18Cr-3Mo-3W-3Co-Fe

10. Hastelloy X. &+ ¢ o « » o o o « o« » 22Cr-18.5Fe-9Mo~1.5Co~Ni
11, Udimet 500 . . . . +. . + ¢ & « « o 19Cr-19.5C0-4Mo-3Ti-3A1-Ni
12. Haynes 25. . . « . v 4« 4« o s « « » 20Cr-15W-10Ni-Co

This selection was based on considerations of past and present practice,
existing problems to be solved, and survey correspondence.

Cyclic oxidation tests were conducted on sheet metal coupons 6 x 0.5 x 0.06
inch in size, individually held in covered zircon ceramic "test tubes", with a
separate specimen for each alloy-temperature—time combination. All coupons were
polished and then "sintered" in hydrogen for two four-hour cycles at 2100°F before
oxidation testing to simulate fabrication practice. Test temperatures of 1400,
1600, 1800, and 2000°F were used for all twelve alloys. Five alloys were also
tested at 2100 and 2200°F. Exposure times at each temperature were 4, 16, 64,
100, 200, 300, 400, 500, and 600 hours. All specimens were cooled to room tem—
perature after each time cycle to simulate the cyclic, rather than steady-state,
heat exposure expected in hot gas turbine service.

Each alloy specimen was measured to determine total oxidation weight gain,
spalling oxide loss, gross thickness change, and oxide layer thickness. All

lChief Project Engineer, Filter Division
2Project Engineer, Filter Division
3staff Metallurgist, Research Laboratories Division



4
specimens, including "as-received" and "as-sintered" samples, were metallo-
graphically examined to determine significant morphology changes caused by
oxidation and heat exposure. After cyclic oxidation each specimen was tensile
tested at room temperature to determine ultimate and yield strength and percent-
age elongation. Electron beam welding tests were conducted on each alloy to
determine feasibility for future production fabrication. Welds were evaluated
by metallographic examination and temnsile testing.

Three alloys: TD nickel-chromium, DH 242, and Hastelloy X, were selected
on the basis of these tests for future investigation as fine wire suitable for
transpiration cooling material fabrication. Selection ecriteria included oxi-
dation and spalling resistance, ductility retention, and fabrication feasibility.
The chromium-aluminum-iron alloy class, GE 1541 and Hoskins 875, were among the
three best alloys in oxidation and spalling resistance but the latter showed
lower ductility retention. Simple chromium-nickel solid~solution alloys, TD
nickel-chromium, DH 242, Chromel A, and Bendel 65-35, showed excellent oxidation
resistance, in that order, along with very good ductility retention. More
complex superalloys, Hastelloy X, and Udimet 500, showed good oxidation resist-
ance and good ductility retention. Other alloys were judged to be less suitable
according to these criteria.



2 INTRODUCTION

This experimental investigation was conducted to evaluate and select metal
alloys which are particularly suitable for fabricating transpiration cooling
materials used in turbine blades and similar engine components. Therefore, major
emphasis was placed on measuring oxidation resistance and retention of mechanical
properties for the selected alloys after cyclic furnace heating in air. This
report describes test results and conclusions derived from testing sheet metal
specimens. A second and final report will describe a similar test program con-
ducted on 0.005 inch diameter wire specimens drawn from the three best alloys
selected on the basis of the sheet metal specimen test results.

Advanced gas turbine engines operate at higher turbine inlet temperatures
than present uncooled engines. Air-cooled turbine blades and other components
are utilized in nearly all new engines under development. Convection cooling,
which is currently being most extensively used, transfers heat from the component
wall by parallel or impingement flow of the coolant air. Film cooling, often
used in series with convection cooling, insulates the component from the hot gas
stream by injecting coolant air through multiple holes or slots in the wall.
These cooling methods increase engine efficiency by allowing higher temperature
operation, but efficiency improvement is diminished by increased consumption of
coolant air. Maximum gains require efficient cooling with minimum cooling air.
Transpiration cooling techniques offer excellent potential for reducing the
coolant flow required and further improving engine efficiency.

Transpiration cooling may be considered as an extension of convection and
film cooling concepts. Cooling air flows through a porous component wall., The
porous wall structure provides extended surface area for convective heat exchange
from the wall to the coolant. At the outer wall surface the coolant is injected
into the hot gas stream boundary layer through many small, closely-spaced pores,
The resultant coolant film insulates the porous wall from the hot gas stream.

The porous wall structure characteristics of large surface area to volume ratio
and small pore size, which provide for most efficient tramspiration cooling,
aggravate problems of structural degradation and porous flow-channel plugging
caused by oxidation corrosion during operation. Oxidation which may be considered
minor for solid or sheet metal components might seriously affect an otherwise
equivalent porous structure.

Oxidation resistance is a primary criterion for transpiration cooling
material specification. Therefore, major emphasis in this investigation was
placed on determining comparative total oxidation and dxide spalling for the
selected test alloys. Other alloy characteristics such as retention of mechani-
cal properties after cyclic heating and electron beam welding feasibility as a
fabrication method were also tested. All tests were designed and interpreted
from the viewpoint of application to transpiration cooling materials engineering.
However, much of the data reported for cyclic oxidation of superalloys should
also be useful for other engineering applications.

The scope of this report is directed toward the initial selection of
twelve candidate alloys, testing and evaluation of those alloys in the context



of their application to space-wound (Poroloy*)'and woven wire (Rigimesh™, *
Poroplate®) transpiration cooling materials, and final selection of three "best-
compromise' alloys for further testing as fine wires. Before testing, specimens
were heat-treated at 2100°F to simulate the typical manufacturing sintering
operation. Cyclic oxidation screening tests were conducted at 1400, 1600, 1800,
2000°F and at 2100 and 2200°F for the five best alloys. The lower temperatures
are comparable to the actual metal temperatures held in present transpiration
cooled turbine blade tests. The higher temperatures represent the range expected
for advanced gas turbine engines where cooling air may leave the compressor at
1200°F. Time intervals of 4, 16, 64, 100, 200, 300, 400, 500 and 600 hours were
chosen to allow reasonable data extrapolation of expected service life. All
specimens were cooled to room temperature at each time interval to simulate the
cyclic oxidation conditions expected in service. Each specimen was contained

in a separate zircon ceramic thimble or "test tube' designed to catch oxide
scales which spalled from the metal surface, and to allow air circulation for
oxygen replenishment. Spalling can contribute to oxidation plugging and eventual
failure of transpiration cooling materials.

After exposure, the twelve sheet specimens were tested to determine their
comparative characteristics. Total oxidation weight gain and oxide spalling were
measured by weighing. Thickness change of the specimen because of oxidation
‘and spalling was measured with a micrometer. Oxide surface characteristics
showing spalls or blisters were photographically recorded. Oxide layer thickness
and intergranular penetration were measured from metallographic sections which
were later etched to show morphology variations. Changes in mechanical properties
due to oxidation and over—aging were found by tensile testing to determine yield
strength, ultimate strength, and percentage elongation. Separate electron beam
welding feasibility tests were conducted on each alloy and were evaluated by ten-
sile testing and metallographic examination of the weld-zone section.

*Poroloy and Poroplate are registered trade-names describing space-wound wire
and laminated woven wire mesh transpiration cooling materials, respectively,
manufactured by The Bendix Corporation, Filter Division. Rigimesh is a regis-
tered trade-name describing laminated woven wire mesh materials manufactured
by the Pall Corporation, Aircraft Porous Media Division.
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3 ALLOY SELECTION AND PROCUREMENT

Specification of the initial twelve sheet specimen screening test alloys
was based on examination of past experience and anticipation of future require-
ments. Particular emphasis was placed on engineering feasibility from both
technical and economic viewpoints. Therefore, present state-of-art alloys,
primarily from the superalloy and resistance-heating alloy families, were chosen:

1. N155. . . . . ..+ .0 « . . 21Cr-20Ni-20Co-3Mo-2.5W-Fe -
. TID nickel. . « . . . . . . . . 2ThO9-Ni

- TD nickel-chromium . . . . . . 2ThO9-20Cr-Ni

. Bendel 65-35 . . . .. . . . . 3 Spinel-35Cr-Ni

. Chromel A. . . . . . . .. . . 20Cr-Ni

. DH 242 . . . . « ¢« v « « « « « 20Cr-1Cb-Ni

. GE 1541. . . . . . 4+ ¢« + « . « 15Cr-4A1-1Y-Fe

. Hoskins 875 . . . . . . . . . 23Cr-6Al-Fe

« RA333 . ... 4+ ... 4« . . 18Cr-3Mo-3W-3Co-Fe

10, Hastelloy X. . « « + v &+ » « . 22Cr-18.5Fe~-9Mo-1.5Co-Ni
11. Udimet 500 . , . . . « « . . . 19Cr-19.5C0-4Mo-3Ti-3A1-Ni
12, Haynes 25. . . . + « + « « . . 20Cr-15W-10Ni-Co

oSN~

The alloy numbers one through twelve assigned in this list are referenced
throughout the report for alloy identification.

Alloy selection included consideration of literature data and elimination
of impractical candidates. Expected oxidation resistance and high temperature
strength were important factors. Refractory metals such as tungsten and noble
metals such as platinum were considered impractical because of respective problems
of oxidation attack and cost or supply. Similarly, development of new alloy
systems or coatings was considered to be outside the scope of this work. Casting-
type superalloys with superior properties were not included because of the dif-
ficulty in producing fine wires from them. Manufacturing considerations, as well
as chemical and physical properties, were weighted in this selection. A total
of 56 candidate alloys were reviewed.

N 155 was chosen because of its fair oxidation resistance and strength,
and because its previous use in many types of transpiration cooling materials
provides a base-line for comparison with other alloys. TD nickel and TD nickel-
chromjum promised excellent high temperature strength because of the thoria dis-
persion, along with good oxidation resistance for the latter alloy. Bendel
65-35 is a nickel-chromium alloy type with a Al903:MgO spinel dispersion to pro-
vide ductility. Chromel A and DH 242 are similar representatives of the nickel-
chromium solid-solution system with good oxidation resistance and ductility at
the expense of high temperature strength. GE 1541 and Hoskins 875 typify the
iron-chromium-aluminum resistance-heating alloys with high oxidation resistance,
but lower strength and low ductility for the latter alloy. RA 333, Hastelloy X,
Udimet 500, and Haynes 25 represent the several families of highly developed
superalloys based on iron, nickel and cobalt.

The twelve selected alloys were purchased from the mills as sheet, strip,
or ribbon approximately 0.060 inch thick. All alloys were specified according
to applicable AMS or proprietary specifications and were certified by their vendor.
After receipt of the materials and verification of their documentation, each alloy
was analyzed by an independent laboratory to verify its composition. The results



%
of this analysis are shown in Table 3-1 which compares the specified or certified

composition for each alloy with the composition determined by sampling and
spectrographic or wet chemical analysis.

All alloys were accepted as complying
with the nominal specification limits.

Suppliers for each alloy are also listed.



4 EXPERIMENTAL PROCEDURE

Test procedures were designed to simulate, within practicable limits, those
conditions expected to arise in future utilization of the alloys. Sheet speci-
mens were polished and heat-treated to simulate the surface finish and micro-
structure of fabricated transpiration cooling materials. Furnace oxidation tests
were conducted with cyclic heating and cooling to roughly simulate service con-
ditions in a hot gas turbine. All alloys were tested together to allow direct
comparison of results.

4.1 Specimen Preparation

Specimens were sheared to a nominal 0.5 x 6 inch size, allowing extra
material for later grinding to a uniform and common size. Surface contamination
was removed by sonic cleaning in hot trichlorethylene followed by acetone rinsing.
After cleaning, the specimen coupons were heat-treated to simulate the sintering
cycle usually employed to bond space-wound or woven wire-type transpiration
cooling materials. While this treatment of sheet specimens may not produce the
microstructure expected for fine wires, the resultant grain growth is more nearly
simulative than the original wrought structure. Sheared coupons were placed in
perforated mild steel trays with Fiberfrax separators to prevent actual sintering
of adjacent strips. The simulated sintering cycle consisted of two four-hour
periods at 2100°F in dry hydrogen (below -80°F dewpoint) with intermediate
cooling to room temperature after sintering. Alloys GE 1541, Hoskins 875, and
Udimet 500 appeared to be slightly oxidized because of their aluminum content;
other alloys were bright.

After sintering, all coupons were polished with a power belt sander using
successively finer grades of abrasive and finishing with #320 grit silicon
carbide. A bright, smooth surface having better than 10 micro~inch RMS finish
was produced. The strips were finish-ground to 0.5 + 0.010 x 6.0 + 0.010 inch
size as shown in Figure 4~1. Final sonic cleaning was accomplished in hot
trichlorethylene with an acetone rinse to avoid chloride residues. Each speci-
men was measured to determine its actual size and area. Thickness was measured
with a calibrated precision micrometer using a pin anvil. Measurements were
made at three points along the specimen length to the nearest 0.0001 inch.
Specimen weight was determined to + 0.1 mg with an analytical balance.

4,2 Oxidation Cycle

Specimens were contained in zircon ceramic thimbles during oxidation
cycling to collect spall and avoid extraneous contamination. The thimbles are
shaped like test tubes 0.88 0.D. x 0.75 I.D. x 7 inches long with a flat disc
lid and having four 0.13 inch air-circulating holes drilled near the top and
bottom as shown in Figure 4-1. Preliminary tests with mild steel samples showed
that this arrangement allows sufficient air convection so that results are
essentially equivalent to open air oxidation. Zircon base ceramic material
(Zr09+8i09, Leco 528-125) was chosen to minimize fluxing or other interaction be-
tween metal oxides and the thimble. All thimbles were hard fired at 2900°F and



baked out at 1400°F to constant weight before using. Coupons were placed in the
thimbles with four-point minimum contact at the corners of the specimen. Each
thimble and thimble-coupon combination was weighed to 0.1 mg before exposure.

Thimbles were vertically supported in 2 x 7 array on a special rack made
from 0.19 inch diameter type 330 stainless steel wire to minimize contact between
thimbles and rack. Twelve openings were used for thimbles containing each of
the twelve alloys. One opening was used for an empty control thimble to check
thimble weight changes due to heating. The last opening was used for a dummy
thimble containing an inserted thermocouple to simulate and monitor actual speci-
men temperature. Ten racks were arranged on a movable skid-pan, allowing one
specimen set for each time cycle and one spare or check set. Thermocouples were
#24 Ga chromel-alumel for 1400 and 1600°F tests and #14 Ga chromel-alumel at the
higher temperatures. One thermocouple from each rack was connected to a central
potentiometer~recorder which continuously monitored the temperature of each
specimen set. Automatically controlled and recording electric furnaces with
13 x 16 x 48 inch type 330 stainless steel muffles, loosely blocked with fire-
brick, were used to maintain temperatures within +17%Z of the nominal setting.

Two furnaces were used to expedite testing.

Oxidation cycling procedure consisted of adjusting the furnace to the re-
quired temperature with a proportional controller set to minimize temperature
fluctuation. Prepared sample skid-pans were loaded with a fork-1lift dolly into
the furnace and power was increased and then backed-off to "'meet' the temperature
and minimize lag. Full furnace recovery time was less than one hour for all rums.
After exposure for the required time, the skid-pan was removed and all sample
sets were cooled to room temperature in about one hour in still air under ambient
conditions: The assigned rack was then removed to a dessicator for future ex-
amination and the other samples were returned to the furnace. This procedure
was repeated for each time interval of 4, 16, 64, 100, 200, 300, 400, 500, and
600 hours and for each temperature of 1400, 1600, 1800, 2000, 2100 and 2200°F.

4.3 Specimen Examination and Testing

. After oxidation exposure, each sample set of twelve alloys was stored in a
dessicator pending later weighing, examination and tensile testing. The follow-
ing characteristics were determined for each alloy after each temperature-time
oxidation period.

(L) Total oxidation weight gain and oxide spall weight
(2) Thickness changes and surface oxide characteristics
(3) Oxide penetration and alloy microstructure :
(4) Mechanical properties at room temperature

4.3.1 Oxidation and spall. - Each alloy coupon-thimble combination was
weighed to 0.1 mg to determine total oxidation and amount of oxide spalling.
Data were determined by direct weighing and by indirect or difference weighing.
The weighing procedure followed this sequence:

(1) thimble + spall + coupon
(2) coupon

(3) thimble + spall

) spall

(5) + thimble



*

The thimble, spall and coupon (1) were weighed together. Then the coupon (2)
was removed, along with adherent oxides, and weighed separately. The remaining
spall and thimble (3) were weighed. The spall (4) was removed from the thimble
with a soft brush and weighed. Finally, the empty thimble (5) was weighed
alone. These redundant weighings provide for checking errors due to accident
or oxide loss because of sticking to the thimble.

Total weight gain and spall were determined from these data. Direct
weights were used except where indirect or difference weights showed less
scatter or error. Example calculations are shown below:

Direct Indirect
Spall weight ) (3) - (5, initial)
Total weight gain (2, final) - (2, initial) + (4) (1) - (5, initial)

Initial thimble weights (5) were corrected to compensate for a small weight
gain of the control thimble at the highest temperatures. Direct and indirect
weight data should be equal and in most cases they were equal within expected
experimental error. Spall weight sometimes exceeds total weight gain because
spall consists of metal oxides while total weight gain consists of reacted
oxygen only.

4.3.2 Thickness and surface examingtion. — After weighing, all speci-
mens were re-measured with the micrometer at the same reference points shown
in Figure 4-1 to determine gross changes in thickness due to oxidation and
spalling. The specimens were sheared to provide samples for macrophotography,
metallographic examination and tensile testing. Surface oxide characteristics
were observed at low magnification and photographically recorded showing the
progression of oxidation corrosion with time for each test temperature. Loose
oxide spall was collected from each specimen and preserved.

4.3.3 Metallographic examination. - Metallographic samples were sheared
from the top end (as held during oxidation) of each specimen shown in Figure 4-1
Shearing was used instead of the customary wet or dry abrasive cut-off wheel
to avoid contaminating the oxide film with extraneous debris. Cut samples
were mounted in a liquid, two-part casting resin. Specimens were segregated
and classified according to their expected polishing and etching characteristics
Each mount contained three to ten sample strips of the same alloy separated
with thin type 302 stainless steel or Inconel 600 support strips to help pre-
serve specimen edges. The strips were painted with liquid resin and bundled
into a compact, wire-wrapped assembly to avoid bubbles between specimens.
Liquid resin potting was used instead of conventional hot-press mounting to
minimize damage to the fragile oxide layers.

The cured specimen mounts were ground back from the exposed specimen ends
about 0.060 inch to obtain a representative specimen cross section. Normal
finish grinding and polishing procedures were employed, using magnesium oxide
for final polishing. Oxide layers were observed at 300X with a microscope
using normal, reflected light. Oxide thickness was measured with a calibrated
eye-piece reticule and average thickness was estimated over the entire specimen



periphery. Photomicrographs at 300X were made showing a representative oxide
layer for the 600 hour specimen of each alloy-temperature combination.

After oxide layer observations and measurements were completed, the 600
hour specimens were etched using the schedule reported in Table 4-~1. Alloy
morphology at the section center was observed and photographed at 500X using
a microscope with normal lighting. Comparison specimens of each alloy in the
"as-received" and "as-sintered" condition were also prepared and photographed.
Electron beam welded specimens, discussed in Section 4.4, were similarly sec-
tioned, polished and etched to show penetration and weld structure. Photo-
micrographs were made at 50X magnification.

4.3.4 Tensile tests. — The four-inch segment of the oxidized specimen
coupon was used for tensile tests to show changes in mechanical properties caused
by oxidation and heat exposure. Half-scale ASTM E-8 tensile test specimens,
having a 1.000 x 0.250 gage section, were wet-ground from each sample. Speci-
mens were pulled at 0.050 inch/minute on an Instron testing machine to provide
a continuous stress—strain curve for each specimen. Ultimate tensile strength
and yield strength (0.27 off-set) were determined on the basis of measured gross
specimen thickness after oxidation exposure to allow data comparison between
specimens. Elongation was measured from lay-out marks on the one-inch gage-
length after fracture. Additional tests were conducted on 'as-received" and
"ag-sintered" material for comparison purposes.

4.4 Electron Beam Welding

Electron beam welding feasibility tests were conducted on each alloy.
Strip specimens, similar to those described in Section 4.1 "Specimen Preparation,"
were heat-treated and butt-welded together. Preliminary tests showed that a
commori welding schedule of 3 ma beam current at 100-130 KV with 0.025-0.040 inch
circular beam deflection and a traverse speed of 30 inches per minute was ade-
quate for all specimens. Two weld samples were prepared for each alloy. Metallo-
graphic samples were made by welding together two 0.5 x 0.5 inch strips and
processing according to the methods given in Section 4.3.3 '"Metallographic
Examination." Tensile test samples were made by welding together two 0.5 x 2
inch strips and wet-grinding one-half scale ASTM E-8 configuration specimens
with the weld-zone centered in the gage-length. Tensile tests were conducted
as described in Section 4.3.4 "Tensile Tests."
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5> RESULTS AND DISCUSSION

The purpose of this investigation was to provide supplementary engineering
data for selecting alloys suitable for transpiration cooling applications.
Three "best~compromise" alloys, TD nickel-chromium, DH 242 and Hastelloy X,
were chosen from the twelve candidate alloys tested. Choice was based on con-
siderations of cyclic oxidation resistance, retention of good mechanical prop~
erties (especially ductility) after oxidation and heat-aging, and manufacturing
or fabrication feasibility. Further oxidation tests of these three alloys in
0.005 inch diameter wire form will be described in a subsequent report. The
results reported in the present investigation are primarily intended to be used
in transpiration cooling technology, but these data should also be useful for
other applications. Alloy selection rationale based on these test results is
discussed in the context of its application to space-wound (Poroloy) and woven
wire (Rigimesh, Poroplate) transpiration cooling materials.

Oxidation resistance is a primary criterion for transpiration cooling
material alloy selection. Maximum cooling efficiency requires a material struc-
ture with extended surface area and small, closely-spaced pores. The large
internal surface area and small internal sections are susceptible to oxidation
damage which may result in plugging or structural deterioration. Oxide growth
within porous flow-channels or internal spalling of oxide scales restricts
coolant air flow and causes localized over-heating which accelerates further
oxidation., Corrosion of thin internal wires or walls reduces material strength
and may ultimately cause structural failure, Minimum cooling with low coolant
air consumption is desirable to maximize net engine efficiency gain. Therefore,
transpiration cooled components should be used at the highest allowable temper-
ature which does not cause excessive oxidation and functional degradation. The
optimum design compromise for transpiration cooling material geometry is largely
determined by the oxidation resistance of the metal alloy selected for
construction.

Retention of strength and ductility after oxidation and heat exposure is
also an important consideration for alloy selection. Most transpiration cooling
materials are used as an outer heat-resisting layer or '"'skin' which is attached
to a cooler supporting structure. The inner structure provides necessary mech-
anical strength for the component and conducts coolant air to the skin through
ducts and plenums. Therefore, the skin is generally required only to "hold
itself", Good stress—rupture properties are desirable, but strength is less
important than oxidation resistance for transpiration cooling materials. Duc~
tility retention during service is necessary. Some superalloys over-age after
prolonged exposure to temperatures in the range of 1400 to 1600°F and become
fairly brittle. This lack of ductility renders these materials more susceptible
to foreign object damage or cracking from cyclic heating and cooling. Therefore,
ductility retention is a major alloy property for this application.

Manufacturing and fabrication characteristics must also be considered in
producing practical and economical transpiration cooled hardware. Most trans-
piration cooling materials are manufactured by sinter-bonding wire structures
which are made by space-winding in a geometrically determined pattern or by
stacking layers of woven mesh. Therefore, the selected alloy must be suitable
for wire drawing and sintering. Comparatively brittle or non-homogeneous alloys
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are difficult to draw and alloys containing reactive elements such as aluninum
or titanium are difficult to sinter. After manufacturing the skin must be
formed and fastened to its supporting structure. Electron beam welding is
commonly used in fabrication. Therefore, alloy weldability is an important
consideration.

This investigation was designed to evaluate and compare the selected alloys
according to oxidation resistance, mechanical stability and manufacturing char-
acteristics, which are essentially pertinent for transpiration cooling material
alloy specification. All test data were reduced and tabulated in Appendix 1,
"Numerical Data Tabulation'. Total oxidation weight gain and oxide spall weight
are plotted as a function of time for each alloy with temperature as a parameter
in Appendix 2, "Alloy Oxidation Plots". Selected photographs of surface oxides
and photomicrographs of oxide layer sections, alloy microstructures, and elec
tron beam weld zone sections are shown for each alloy in Appendix 3, '"Metal-
lographic Examination'". Oxide layer thickness and penetration, determined by
measurement of the metallographié sections are shown in Appendix 4, "Oxidation
Penetration Plots". Mechanical property changes with exposure temperature are
shown for each alloy at 100 hours and 600 hours cycling time in Appendix 5,
"Tensile Test Data Plots".

5.1 Oxidation and Spall

Total oxidation weight gain was determined for specimens representing each
alloy-temperature—time combination. Specific weight gain per unit area was
calculated from both direct weighing data (net increase in the sum of coupon
plus collected spall weights) and indirect or difference weighing data (net
increase in total thimble plus specimen weights, corrected for thimble weight
change). These data are plotted in Figures 5.1~1 through 5.1-6 which compare
alloy oxidation resistance at each test temperature. Faired power-function
plots on a log-log grid, showing specific weight increase as a function of
time, were adequate to represent the test data. The resultant linear relation-
ship for most alloy tests suggests that diffusion-controlled oxidation kinmetics
predominated, in which expected parabolic rate laws were modified by alloy
complexity and oxide spalling at the higher temperatures. Direct weighing data
was used from 1400 to 1600°F tests while indirect weighing data usually proved
to be more reliable at higher temperatures. Oxide spalling and adherence to
the test thimbles was more severe at temperatures above 1800 to 2000°F. The
affect of increasing temperature on oxidation rate is shown for each alloy in
Appendix 2, "Alloy Oxidation Plots".

Oxide spall weight was similarly determined for each specimen and expressed
as specific weight per unit area. Spalling for each alloy is compared in
Figures 5.1-7 through 5.1-11 for each significant test temperature. Spalling
was not measurable within test accuracy limits at 1400°F and many alloys had
insignificant spalling at 1600°F. Spall rate data are also represented by a
linear plot on a log-log grid which suggests its dependence on the total oxi-
dation rate. The affect of increasing temperature on spall rate is also shown
for each alloy in Appendix 2.

12



¥

The comparative oxidation and spall rates shown in Figures 5.1 through
5.11 are identified according to the alloy number sequence assigned in
Section 3,'Alloy Selection and Procurement",

1. N 155 7. GE 1541

2. TD nickel 8. Hoskins 875
3. TD nickel-chromium 9. RA 333

4, Bendel 65-35 10. Hastelloy X
5. Chromel A 11. Udimet 500
6. DH 242 12, Haynes 25

At 1400°F the iron and nickel base resistance-heating type alloys (8, .6, 3, 5, 7)
are shown to be most oxidation resistant in the order given when evaluated at
the 600 hour mark., The longest oxidation times are considered to be most sig-
nificant for engineering evaluation and selection of the better alloys. Con-
sideration of the plotted slope of specific weight gain/time is also important:
alloy 7 apparently has a high initial oxidation rate, which is quickly arrested
when a protective oxide film is formed, and the resultant slope is nearly flat.
Alloy 4, Bendel 65-35, was not tested at 1400°F. At 1600°F the same alloy types
(3, 4, 5, 6, 7) show best oxidation resistance but in different sequence and at
1800°F the order of ranking (3, 7, 8, 5, 6) is again changed. At 2000°F alloys
3, 8, and 7 are clearly superior and superalloys 10 and 11 begin to contend
with the nickel-chromium alloys 5 and 6.

Based on these comparisons, five alloys were chosen for further oxidation
cycling at 2100 and 2200°F: TD nickel-chromium (3), DH 242 (6), Hoskins 875
(8), Hastelloy X (10), and Udimet 500 (11). Alloy 6 was chosen over similar
alloy 5 because both alloys were comparable in oxidation resistance at 2000°F,
and alloy 6 had been used to make transpiration cooling materials having good
ductility retention. Alloy 8 was chosen over similar alloy 7 because the former
showed slightly better oxidation resistance at 2000°F, and alloy 7 presented
more difficult future manufacturing problems because of its yttrium content.

At 2100°F the chosen alloys were ranked 3, 8, 10, 6, 11 and at 2200°F the order
was changed to 3, 8, 6, 10, 11, Alloys 3, 6, and 10 were later chosen for
further study as fine wires. Alloy 3 was consistently superior in high temper-
ature oxidation resistance. Alloys 6 and 10 promised good oxidation resistance
along with good mechanical and fabrication properties, already proven in manu-
facturing and testing transpiration cooling materials. Alloy 8 was not tested
in wire form, despite its excellent oxidation resistance, because of its rapid
loss of ductility on heating as shown by the tensile tests described in Sec-
tion 5.4. Alloy 7 retained ductility after heating at 2000°F. Later testing
and metallographic examination indicated that alloy 7 would have provided a
better combination of oxidation resistance and ductility retention than alloy 8.

Spalling resistance is shown separately in Figures 5.1~7 through 5.1-11.
Alloy ranking for least spalling closely follows that given for total oxidation
resistance. Spalling was negligible for all alloys at 1400°F; at 1600°F spalling
was measurable for alloys 4, 1, 9, and 10 only. At 1800°F ranking for least
spalling was 8, 3, 7, 10, 12 and at 2000°F the order was changed to 7, 8, 3,

10, 6. At the higher test temperatures alloy ranking was 3, 8, 10, 6, 11 at
2100°F and 3, 8, 6, 10, 11 at 2200°F., The superalloys 10 and 11 showed
sharply increased oxidation and spalling rates after about 300 hours exposure
time.
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5.2 Thickness and Surface Examination

Gross thickness changes measured with a micrometer are recorded in
Appendix 1, "Numerical Data Tabulation". A general trend of increasing thick-
ness with progressing oxidation was shown until spalling became significant.
After this point localized scaling and spalling caused increasing data scatter.
Oxide layer thickness and penetration measurements were, therefore, determined
exclusively from metallographic sections. Gross thickness measurements when
compared with oxide penetration measurements, provide a useful indication of
progressive oxidation and remaining metal thickness as shown in Appendix 4,
"Oxide Penetration Plots".

Surface oxides were examined for each specimen. Typical characteristics of
color, texture or particle size, and magnetic properties are noted in Appendix 1.
Photomacrographs of the 1800°F specimens were selected for reproduction in
Appendix 3, "Metallographic Examination'". This temperature showed visibly pro-
gressive oxidation corrosion for all alloys except TD nickel-chromium which is
shown at 2200°F. These photographs help describe the qualitative character of
oxide formation and spalling for each of the test alloys.

5.3 Metallographic Examination

Photomicrographs are reproduced in Appendix 3, '"Metallographic Examination",
which show the formation and penetration of the oxide layer for the 600 hour
specimen at each significant test temperature. Speciméns were selected, as
indicated by captions, to show the probable useful range of temperature. These
metallographic sections, and the other specimens exposed for shorter times, were
measured to determine the data plotted in Appendix 4, '"Oxide Penetration Plots"
which show the relationship of specimen thickness change and oxide penetration
as a function of cycling time for each temperature. Oxide layer thickness and
observed penetration are recorded for each specimen in Appendix 1, "Numerical
Data Tabulation'. Internal microstructure and morphology changes resulting
from exposure to successively higher test temperatures are also shown for the
same 600 hour specimens in the photomicrographs of Appendix 3. Control specimens
showing "as-received" and "as-sintered" microstructures are shown for each alloy:
Electron beam weld zone sections, etched to show weld characteristics and micro-
structure, are also reproduced here.

Examination of the oxide layer and alloy microstructure photomicrographs
of Appendix 3 shows progressive change with increasing temperature which may
be correlated with alloy performance. The most oxidation resistant alloys
retain comparatively thin, adherent oxide films with little integranular or
internal oxidation. The beginning of substantial oxide penetration is associated
with heavy spalling and an increase in spall rate which clearly defines the upper
temperature limit for engineering utilization of the alloy. Similarly, micro-
structural changes may be compared with changes in mechanical properties and
especially with changes in ductility which may affect alloy selection for some
temperature ranges.

TD nickel-chromium (3) alloy (Figures A3-3), which exhibited the best
oxidation resistance, has an initial medium-fine grain structure with a uniform
but slightly clumped dispersion of thoria. Unresolved micro-sized thoria
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particles are probably also present. Simulated sintering heat-treatment caused
no apparent change in this microstructure. Oxide layers are thin and uniform
at temperatures up to 2000°F. Minor spalling begins in the range of 2000-
2200°F, in association with increased oxide penetration and apparent internal
oxidation. The oxide penetration plots of Appendix 4 show small penetration
and slight total thickness growth which may be related to internal oxidation

at the highest temperatures. Microstructural changes are minor over the entire
temperature range of 1400-2200°F.

Hoskins 875 (8) and GE 1541 (7) alloys (Figures A3-8 and A3-7), which had
excellent oxidation resistance, both changed in microstructure after sintering
at 2100°F. Alloy 8 showed large grain growth from an initial fine grain, single-
phase structure which was associated with drastic reduction in ductility. Alloy 7
had smaller grain growth with some spheroidizing of an initial two-phase struc-
ture and an increase in ductility. Both alloys formed thin adherent oxide films
at temperatures up to 2000°F. Penetration and thickness changes were minimal.
Internal oxidation and associated spalling was also low. Grain structure became
slightly coarser with increasing temperature and ductility further decreased,
although alloy 7 retained very good ductility.

DH 242 (6) and Chromel A (5) alloys (Figures A3-6 and A3-5), which had good
oxidation resistance, both displayed marked grain growth after sintering. The
original medium~grain matrix contained fine inclusions of primary carbides.
Oxide growth and penetration became substantial above 1800°F, and was associated
with heavy oxidation and spalling. Large thickness increases also appear and
may result from extensive internal oxidation. Alloy 6 had slightly more weight
gain but less spall and penetration than alloy 5 at the same temperatures. Both
alloys showed some additional grain growth and ductility loss as temperatures
increased but ductility retention was excellent, especially for alloy 6.

Hastelloy X (10) and Udimet 500 (11) alloys (Figures A3-10 and A3-11),
which had fair oxidation resistance, were considerably changed in microstructure
and mechanical properties by sintering., Alloy 10 had a fine grain structure
with visible primary carbides. After sintering large grain growth was observed
with a new boundary phase and some spheroidization, accompanied by reduced
strength and ductility. Alloy 11 changed from a fairly large grain structure
with a few primary carbides and a preferentially oriented fine precipitate to
a similar structure with uniformly precipitated gamma prime. Strength was
greatly decreased and ductility was increased because of this solutioning.

Both alloys showed substantial oxidation attack above 1600°F with fairly heavy
oxidation, spalling, and oxide penetration. Grain growth increased with increas-
ing temperature, strength decreased, but ductility improved from comparatively
low elongations in the 1400-1600°F range.

Other alloys were less satisfactory in oxidation resistance. Bendel 65-35
(4) alloy (Figures A3-4) showed little change in its fine grain, coarsely dis-
persed Al1205°Mg0 spinel structure after sintering, and oxidation resistance was
good at 1600°F., But spalling and oxidation increased sharply at higher temper-
atures, where a second lot of the alloy was tested, and ductility decreased while
thickness grew, indicating substantial internal oxidation shown in the photo-
micrographs. Haynes 25 (12) alloy (Figures A3-12) showed slight grain growth
after sintering but initial strength was substantially reduced by annealing,
Oxidation and spalling increased greatly at 1800 and 2000°F and ductility was

15



i
minimized at 1800°F. Thickness increases at 1800 and 2000°F imply internal
oxidation as shown by the oxide layer and internal microstructures. N 155 (1)
and RA 333 (9) alloys (Figures A3-1 and A3-9) had large grain growth after
sintering and comparable oxidation resistance, with greatly increased oxidation
after 1600°F and evidence of penetration and internal oxidation. TD nickel (2)
alloy (Figures A3-2) retained its finely dispersed thoria structure after sinter-
ing with little agglomeration. Oxidation and spalling was high, as expected,
and became almost catastrophic above 1600°F. The photomicrographs show heavy,
uneven oxide formation but little internal change although thickness growth
occurred.

5.4 Tensile Tests

All tensile test data are tabulated in Appendix 1, "Numerical Data Tabu-
lation", which gives ultimate strength, yield strength, and elongation for each
specimen after oxidation cycling. Selected data at 100 hours and 600 hours
exposure time is graphically displayed in Appendix 5, "Tensile Test Data Plots",
which shows progressive changes in alloy mechanical properties with increasing
exposure temperature. Mechanical properties of thealloys are compared at 600
hours for each test temperature in Figures 5.4-1 and 5.4-2, Changes in mech~
anical properties are related to corresponding changes in alloy oxidation attack
and microstructure as indicated in Section 5.3, '""Metallographic Examination'.

TD nickel-chromium (3) had good ductility (about 20%Z) and fairly high
yield strength (mear 90 ksi) which were virtually unaffected by exposure to
temperatures in the range of 1400- 2200°F for up to 600 hours. DH 242 (6) and
similar alloy Chromel A (5) had greater ductility (over 40%) and lower yield
strength (near 30 ksi) which were only slightly reduced up to 2000°F. Hoskins
875 (8) had almost zero ductility after sintering and oxidation, and reached a
maximum strength near 70 ksi at 1800-~2000°F. GE 1541 (7) had good ductility
(over 20-30%) and yield strength (over 40 ksi) which were somewhat reduced by
exposure at the higher temperatures up to 2000°F. Hastelloy X (10) had fairly
low ductility (below 10-20%) after aging at 1400-1600°F which improved at
higher temperatures because of solutioning while yield strength dropped from
over 40 ksi to about 30 ksi. Udimet 500 (11) had a minimum ductility (below
10%) and yield strength (about 70 ksi) at 1800°F with better properties above
and below this temperature, Other alloys, which were not chosen for high tem-
perature testing or wire-form tests, showed individual characteristics which
may be seen by reference to Figures 5.4-1 and 5.4~2 and Appendix 4.

5.5 Electron Beam Welding

Electron beam welding feasibility was demonstrated for each alloy.
Metallographic sections of typical butt-welded joints are shown in Appendix 3,
"Metallographic Examination'. Tensile test results for welded specimens are
given in Table 5.5-1, "Mechanical Properties of Alloys' and graphically com—
pared with other tensile test data in Appendix 5, "Tensile Test Data Plots'.
All alloys were welded but joint efficiency and microstructure varied
considerably.
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+ TD nickel-chromium (3) was difficult to weld and showed undercutting and
agglomeration of the thoria dispersion. A second '"cosmetic" pass was made to
seal off porosity and improve the weld surface. Joint efficiency was over
90 percent based on room temperature yield strength but fracture occurred in
the weld at only one percent elongation. DH 242 (6) was easily welded with a
fine-grain homogeneous microstructure. Tensile test results for the welded
specimen were comparable to those for the unwelded specimen and fracture
occurred outside of the weld zone. Hastelloy X (10) was also easily welded
with good joint efficiency and structure. Tensile fracture was ductile and
out of the weld zone. Alloys GE 1541 (7) and Hoskins 875 (8) were easily welded
with a resultant fine-grain microstructure but weld joint strength and ductility
was fairly low. Comments on alloy weldability are summarized:

Alloy Comments

N 155 (1) eeeceensanennssss Apparently sound weld easily obtained. There were
no voids in a very fine as~cast structure.

TD nickel (2)..¢¢sveeee... Not easily welded. There was undercutting on beam
side of the weld and the microstructure showed
partial agglomeration of thoria dispersion.

TD nickel~-chromium (3).... Not easily welded. There was undercut on beam side
of the weld. A cover pass was made at 90 KV, 5 MA,
15 IPM to seal porosity. Agglomeration of thoria
dispersion and some porosity were revealed in the
microstructure.

Bendel 65=35 (4)evves..... Apparently sound weld with low porosity easily
obtained., The weld zone was undercut on both sides,
apparently because the spinel was expelled during
welding.

Chromel A (5)+..evevee.... Apparently sound weld easily obtained, with medium
to fine grain structure

DH 242 (6) evveeeeseessssse Apparently sound weld easily obtained, with fine
as-cast structure.

GE 1541 (7)eeeevecseneess. Apparently sound weld easily obtained, with fine
grain structure.

Hoskins 875 (8)+..vvv..... Apparently sound weld easily obtained, with fine
grain structure.

RA 333 (9).eveeveeeoanss.. Apparently sound weld easily obtained, with fine
precipitate in a fine grained as-cast structure.

Hastelloy X (10).......... Apparently sound weld easily obtained, with a fine
acicular as-cast structure.

Udimet 500 (11)........... Apparently sound weld easily obtained, with as-
cast structure containing fine gamma prime.

Haynes 25 (12)...+e++e+... Apparently sound weld easily obtained, with fine
precipitate in as-cast structure.

Electron beam welding schedule range was 30 IPM, 3 ma, 100-130 KV, and
0.025-0.040 circular beam deflection for all specimen joints.
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6 CONCLUSIONS

Alloy specification for transpiration cooling material requires selection
of an optimum engineering compromise of properties which include oxidation
resistance, strength and ductility retention, and manufacturing feasibility.
Oxidation and spalling resistance is of paramount importance. The maximum
operating temperature and service life of a fine-wire transpiration cooling
material are largely determined by the rate of oxidation attack and penetra-~
tion. Fine wires are more susceptible to damage by oxidation than thicker
sheet metal. Uniform oxide penetration of only 0.0003 inch, which may be
negligible for a sheet specimen, is substantial for a typical 0.005 inch round
wire and results in a 23 percent reduction of cross sectional area and strength.
Moreover, some alloys containing small amounts of oxidation inhibiting con-
stituents may be expected to exhibit higher oxidation rates as fine wires
because of diffusion geometry. Therefore, oxidation data for sheet metal
specimens given in this report should be primarily used for alloy comparison
purposes.

Alloy N 155 was chosen as the base-line for comparing other alloys because
of its previous use in many types of transpiration cooling materials which have
been tested in a variety of applications. The maximum service temperature
limit for N 155 is near 1600°F. Other alloys may be compared with base-line
N 155 by extrapolating oxidation test data to estimate the temperature at which
their oxidation resistance is equal to N 155 at 1600°F. These extrapolations
were made for each alloy tested to estimate equivalent temperatures for total
oxidation weight gain, spalled oxide weight, and oxidation penetration depth,
Data from the average curves shown in Appendixes 2 and 4 at 600 hours exposure
time were plotted against reciprocal absolute temperature. These Arrhenius
plots, shown in Figures 6-1 to 6-3, indicate comparative oxidation kinetics
and provide a basis for temperature extrapolation. The extrapolation results
summarized in Table 6-1 are based on N 155 at 1600°F and 600 hours for which
total weight gain was 2.4 mg/in2, spall weight was 5.0 mg/inZ, and oxidation
penetration was 0.0003 inch. Equivalent temperatures to produce the same
oxidation effects at 600 hours are listed for each alloy.

These extrapolations provide a numerical basis for comparing alloy per-
formance. The data plots summarized in Figures 6~1 to 6-3 showed that the
effect of temperature on oxidation rate could be reasonably approximated by
either a straight line or a upward-concave smooth curve having one relatively
straight segment. Data fitting the former model indicate a simple exponential
temperature-rate relationship while curved plots imply a temperature dependent
change in oxidation attivation energy. Weight gain, spall weight, and oxida-
tion penetration are all related to oxidation rate but each characteristic is
modified by particular alloy properties. The more oxidation resistant alloys
(when compared to base-line N 155 at 1600°F) have higher equivalent tempera-
tures but different temperatures for each oxidation characteristic. Moreover,
equivalent temperature ranking of the alloys may change somewhat if different
comparison temperatures, times, or alloys are chosen, but the general sense
of comparison remains constant.
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R TABLE 6-1 ,
 COMPARISON OF EXTRAPOLATED ALLOY PROPERTIES

Alloy Equivalent Performance Temperature, °F
Weight Spall Oxidation
Gain Weight Penetration
1. N 155 (base-line) . . 1600 1600 1600
2. TID nickel . . . . . . 1310 1460 1370
3. TD nickel-chromium . 1790 2240 2070
4. Bendel 65-35 . . . . 1630 1560 1480
5. Chromel A . . . . . . 1670 1640 1590
6. DH 242 . . . « « . & 1650 1650 1620
7. GE 1541 . . . . . .. 1720 2180 2020
8. Hoskins 875 . . . . . 1770 2130 1860
9. RA333 . ... ... 1460 1610 1560
10. Hastelloy X « o « . . 1510 1820 1640
11. Udimet 500 . . . . . 1420 1680 1650
12, Haynes 25 . . . . . . 1520 1790 1670

TD nickel-chromium (3) is consistently among the best alloys tested for
total oxidation resistance, least spalling, and minimum penetration. This
superiority is especially pronounced at the longer exposure times and higher
temperatures which are of interest for further transpiration cooling develop-
ment. Initial strength at room temperature is fairly high and ductility
retention is excellent. Elongation is mnearly constant at about 20 percent
regardless of exposure time or temperature. Electron beam weldability is
marginal. A good mechanical joint can be made but the dispersed thoria is
agglomerated in the weld zone. This lack of dispersion may result in lowered
high temperature strength, but the resultant solid weld may still be stronger
than the porous transpiration cooling material. Wire drawing is difficult because
of the thoria dispersion and typical inclusions or voids in the "break-down"
rod stock. Otherwise, manufacturing and fabrication are expected to be rela-
tively straight-forward. TD nickel-chromium offers excellent potential for
further development.

DH 242 (6) is a simple solid-solution nickel-chromium alloy with added
columbium to improve ductility retention. Oxidation and spall resistance is
surpassed only by TD nickel-chromium and the iron-~chromium~aluminum alloys.
Mechanical properties, especially elongation, are retained after heat exposure
with little degradation, although initial strength is comparatively low.
Electron beam welded joints are sound and easily made.- DH 242 is easily and
inexpensively drawn into wire. Transpiration cooling materials have already
been manufactured from this alloy on a production basis, and components, such
as turbine blades and shroud liners, have been fabricated by electron beam
welding. DH 242 should continue to be useful in these applications.

Hastelloy X (10) proved to be the most oxidation and spall resistant of
the conventional superalloys, particularly at the higher temperatures. Strength
is fairly high compared to the simpler nickel-chromium alloys and ductility
retention is good except at the lowest temperatures of 1400 and 1600°F where
over-aging apparently occurs. Electron beam weldability is good. Hastelloy X
can be drawn into fine wire at moderate cost and can be made into useful
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porous wire structures. Sintering is not difficult but requires good tempergture
control to avoid alloy segregation. Hastelloy X has been used to manufacture

a variety of transpiration cooled components, and is probably more useful in
comparatively coarse or thick-section constructions which require high strength
rather than oxidation resistance. '

GE 1541 (7) was not tested at 2100 and 2200°F because similar alloy
Hoskins 875 (8) appeared to have greater oxidation resistance at 2000°F.
Subsequent tensile testing and metallographic examination showed that alloy 7
offered a better balance of oxidation resistance and mechanical properties
than alloy 8. Alloy 7 retained good ductility and strength up to 2000°F while
alloy 8 became comparatively brittle. Alloy 7 is exceeded only by TD nickel-
chromium in combined oxidation resistance and stability of mechanical properties
after heating. ZElectron beam weldability appears to be good. Manufacturing
feasibility is complicated because GE 1541 is not yet widely available, especially
in wire form, and present sintering practices cannot be employed. The necessary
aluminum and yttrium content of alloy 7 requires special surface cleaning pro-
cedures and vacuum sintering or gettering techniques instead of usual dry-
hydrogen atmosphere sintering. In spite of these problems, GE 1541 offers
excellent potential for further development as a transpiration cooling material
alloy.

Other alloys which were tested were considered to be less suitable for
transpiration cooling materials. Hoskins 875 (8) has excellent oxidation
resistance but comparative ductility retention is low. Bendel 65-35 (4) and
Chromel A (5) had good oxidation resistance but were generally surpassed by
the similar alloys TD nickel-chromium and DH 242. Udimet 500 (11) and Haynes 25
(12) had fair oxidation resistance. However, the former is difficult to sinter
because of its aluminum and titanium content and the latter is surpassed by
Hastelloy X in these tests. Alloys TD nickel (2), N 155 (1), and RA 333 (9)
were least oxidation resistant in the order given.

Based on these sheet specimen screening tests, the major conclusions of
this report are summarized.

1. TD nickel-chromium, DH 242 nickel-chromium, and Hastelloy X alloys
were chosen for further testing as 0.005 inch diameter wires.

2. GE 1541 alloy, in retrospect, should have been chosen for testing at
2100 and 2200°F and further testing in wire form.

3. TD nickel-chromium alloy was the most oxidation resistant and mechan-
ically stable alloy tested. 1In spite of marginal electron beam
weldability, further investigation and development is recommended.

4, DH 242 nickel-chromium alloy had very good oxidation resistance,
ductility retention, and electron beam weldability which support
its continued use in transpiration cooling materials.

5. Hastelloy X alloy was most oxidation resistant of the conventional
superalloys tested, and demonstrated good strength, ductility reten-
tion, and weldability.

6. GE 1541 alloy had excellent oxidation resistance, ductility retention
and weldability. 1In spite of probable sintering difficulty, further
investigation and development is recommended.
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TABLE 4-1 METALLOGRAPHIC ETCHANT SCHEDULE.
ALLOY ETCHANT PROCEDURE
Let solution set for one-half hour or
until solution lightens. Using a carbon
1 2% Chromic acid =~ 4 ml cathode electrolytic etch with 5 volts
N 155 Hydrochloric acid - 96 ml until a blue stain appears. Turn the
current off and swirl the sample in the
etchant until the blue stain is removed.
2 Ferric chloride -~ 5 gm
TD nickel Hydrochloric acid ~ 50 ml Swab.
Water - 100 ml
3
D nickel- 10% Oxalic acid Electrolytic: 5 volts, 3-10 seconds.
chromium
4 Hydrochloric acid - 1 part Swab with solution; use heat lamp to heat
Bendel 65-35 Glycerol - 1 part specimen to start etching reaction.
Hydrochloric acid - 1 part _acy
s Glycerol - 1 part Same as Alloy 4 (Bendel 65-35).
Chromel A ALTERNATE ETCHANT
2% Chromic acid -~ 4 ml
Hydrochloric acid - 96 ml Same as Alloy 1 (N 155).
DH6242 10% Oxalic acid Electrolytic: 5 volts, 5-25 seconds.
GE71541 10% Oxalic acid Electrolytic: 5 volts, 15-60 seconds.
8 o . . -
Hoskins 875 10% Oxalic acid Electrolytic: 5 volts, 20-60 seconds.
9. o . —
RA 333 10% Oxalic acid Electrolytic: 5 volts, 3-10 seconds.
Ferric chloride - 5 gm
Hydrochloric acid - 50 ml Swab.
10 Water ~ 100 ml
Hastelloy X
ALTERNATE ETCHANT
10% Oxalic acid Electrolytic: 5 wvolts, 2-5 seconds.
Ferric chloride -~ 5 gnm :
Hydrochloric acid - 50 ml Swab.
11 Water - 100 ml
Udimet 500
ALTERNATE ETCHANT . _
10% Oxalic acid Electrolytic: 5 volts, 2-6 seconds.
12 2% Chromic acid -~ 4 ml
Haynes 25 Hydrochloric acid - 96 ml Same as Alloy 1 (N 155).
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SPECIMEN AND EQUIPMENT SCHEMATICS
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Figure 4.1 Specimen and test schematic.
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Figure 5.1-1 Oxidation resistance comparison, 1400°F.
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SPECIFIC WEIGHT — MG/CM2
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1. N 155 ¢ ¢ ¢ o s o =
2, TD nickel-.. . . . .
3. TD nickel-chromium.
4., Bendel 65-35. ., . .
5 Chromel A . . . . .
6. DH 242. ¢« ¢ o o« & &
7. GE 1541 . . « o .
8. Hoskins 875 . . . .
9. BA333. ¢ ¢ o & & &
10. Hastelloy X . . . .
11. Udimet 500. . . . .
12, Haynes 25 . . . . .

APPENDIX 1

NUMERICAL DATA TABULATION

CONTENTS

TABLE

Y
e ooa . WAI-2 . . L.
e s e o« JAL-3 . . . .
o o o o JAl-4 . . .,
e o o s JAl-5 . . . .
e o o o JAl-6 . . . .
e e o o JAL-7 . . . .
o s o o JAlL-B . . . .,
s e oo JAL-9 . . . .
e » o o SAI-10. . . ,

o o o GJAL-11, . . .

e o . JAL1-12, . . .

Reduced numerical data is given for each

following legend:

A  Exposure Time
(hours)

B Specific total
weight gain
direct-method
(mg/in?)

C Specific total
weight gain
indirect method
(mg/in?)

D Specific spall
weight (mg/inz)

E Thickness change,
(10~3 inches)

alloy

tested according to

PAGE

44
46
48
50
52
54
56
58
60
62
64
66

the

All times are total hours at the specified temperature.
Samples were allowed to air cool to room temperature

between cycles.

The specimen was weighed before and after exposure.
The difference plus the spall divided by original sample
area was designated specific total weight gain — direct
method. At low temperatures or where the amount of
spall was small, the direct method was more predictable
than the indirect method.

The ceramic thimble and the specimen were weighed to-

gether before and after exposure.

The difference divided

by original sample area was designated specific total

weight gain — indirect method.

At high temperatures or

where the amount of spall was large, the indirect method
was more predictable than the - direct method.

The metal oxide that was collected in the ceramic thimble
divided by original sample area was designated specific

spall weight.

Based on the average of three (3) measurements with hand
micrometer. Both ends and the center were measured.
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Average oxide
thickness,
(103 inches)

Maximum depth
of penetration
(10-3 inches)

Yield strength
(psi)

Ultimate strength
(psi)

Elongation
(percent)

Metal strip
(color)

Metal strip
(texture)

Metal strip
(magnetic
properties)

Spall
(weight)

Spall
(color)

Spall (particle

size)

Spall (magnetic
properties)

e 4

Uniform oxide layer plus depth of average intergranular
oxide measured from metallographic sections.

Maximum depth of oxide penetration measured from metal-
lographic sections.

Determined using 0.2% offset. Area based on measure-

ments after exposure.

Area based on measurements after exposure.

Measured on one (1) inch gage length layout.

B : Black Gr : Green

Bl ¢ Blue P ¢ Purple

Br : Brown IC : Interference Color
G : Gray L Light

S Smooth-metallic L Laminated

P Powdery M : Melt-like blisters
F Flaky Pt : Pitted

ND : Not Detectable

W : Weak

S : Strong

Total weight (not specific weight).

ND Not detectable 4 : 0.1 -1.0
1 : <0.001 grams 5 : 1.0 - 10
2 0.001 - 0.01 6 : >10.0

3 0.01 - 0.1

Same as K "Metal strip (color)'.

P : Powder M Medium 1/32 - 1/8
S + Small <1/32 in. L Large >1/8
diameter
- ND : DNot Detectable
W : Weak
S : Strong
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/

METAL STRIP

ALLOY 2, TD NICKEL.

/ MECHANICAL PROPERTIES /

.NUMERICAL DATA TABULATION:

TABLE Al-2

WEIGHT GAIN & THICKNESS CHANGE

alala al al el alalala al gl al alal alal al ala
1t ] = == T EIEE EIEE IR zlZw =2 Z) B2l =2 2] A &=
LS I U I I N B O I O Y- P -V (Y- LI I I O-¥5 I-V5 I -F) N -VE I¥- 5 Y-V F-VR iy -V} o = =2 2 2] Al A A a3
IR I
Mmoo W] m| opf b s T A I gl 2lg g8
(A S R T T N N S if 1] o] of ol o|lololold ol of o] of o O O] Ola
al al /]l al al gl a a8
| =m & &\ & Al &Zp o) A 2] &l | | N A ) ] N P oo N ] ] ] ] 0|
wm| vl i nj | Y| Bl vl v w w w w v vl uj |l vl v 0w vl i vy vn]l V|l | w| wn
v v vl wl |l |l |l n|l el o | vl v Wl wul Yl Kl v v @ | | & Al Al a2 iR
T IE~S ST IR VY IR N VY I VY R VS I VR VY LY
ot of ol ol o o] vl ol ol o o af O O K] s uf & &) & [Y I B 1 VS R VE NS VE REVE NEUE R TI E Y
O O O O O O O O B O G| G} O 8] o] | oj v| vl o ol oj vjo]lojolo]jo] vo
o0 Wl ] | 0] Wl ] Of ] N ~| @ | Wi w] | O] ~| | o N Wl | OO O n]|e] o
=] =] A A B ] A ] = | o= Al Al A 1] A = A - I I I = s
~| N ] ] n| ] o]lwo|l | o ~ i} i M N NN ] O © il Hl ol ]~ N O
] | ool of | e o] o e I B R I e e T Al H] H] o ]l ] o] o
Wi w| Wl Wl w|w|w|w!lw|wo Wi Wl WO o W O W W] o] o Wl Wl W N 0w n|n [a} sl
o] of of | ~| 0| 0j o]~ wf ™~ ~| o oo n| o} ~|] oo} = Al alin| wjm]ol || of =
= A ] Sl Hl ol o] =)o IR B R Bl e =1l B Al dl ol a]ja]lala|o]| o] @
52 RS2 S IR IRER o ) QS BEE e o ) | o] | | T o G d] F| o] F] i | D] o
olojo|lolo|lo|lo|lo|o]| ol of o of o] o] o] o} o] 1 ojololo|lolo|lojo] o] 1
wy
HNI\T\'TU\NIAQ" Hr—il\C\IO\G\O\O‘ mv\omlmmm::'
o| o olo|o|lelojo o]l o]l ol o ojo| o] ~ ol ol A4 = a]lmla] <
Nl Nl N[ Ao gtin] e o) o ] ing ) ol o] =] o | o|lnu|lwjololow|lo] wjn
ol o|loc]lolo|lo|lo]ololo o| o] o] ol o] o of ~H| A~ ololmH| ]| ~]~
ololH|lo|lojolol 1]~ o] o]l o] o ©| ol of ~uf | = I I =S I S 8 LI ]
olo|lo]lolole|lo]lolojo o]l o] o] o]l o]l o}l o] o] o} o olojo]lo]lo{~n]|nio] o]lx
Al~]lea|lald]| nlw
N et | ]
olrioloalwln]~]~]a]wo o] Hl o] vl el w) o] ~| o] = njolo|lr~]n]oler]|a]| ~w
Bl Nlonjonionin]lslnin|n] x|l ol n] ~ o] A]lnn]loje] ookl n]ca]jlojca]lclo]lonlvo o | 0
a ° ] A A] 8] Q& «}o Al ~iR|lolal oo
Q) o =3 =
=] S =1
3 90 =]
i ot —
mC\QNI\M\ONO\HmmCOI\NIn\ONNl\H\DwI\O\(DO\NI\ o~
HrlNa]lon]lo]ltlnin|n]lojn H ool ] o] Al ] o]l H] Al Bl n{n]jo|lNlN]|]oloN] 0] O
b=l = ] =] A] ] N )2 i~ NINIH] OO
] - < [ |
0
H H =
L o [}
Ul nd ol py 9
g wlolslolololololole] & v e zlolocjololo]lo|o] &ls|vlx|lolololeloclol
3] ~Hivlolo|o|ololoio] 9 ~] of ©| ol oS o S| o] @ miv]olo|o|o|olo]lS
B Al RlA|lF|nioie] & ] | o) T v o o] & alQ|Aa]ls|n]o]e

46




+ ALLOY 2, TD NICKEL.

NUMERICAL DATA TABULATION

TABLE Al-2

WEIGHT GAIN & THICKNESS CHANGE
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%333333333
wf «vl a] al @) Al Al alala
sl o] bl ow wl ou] m]om
Hl vl ol olo|lo|o|lo|lala
DO O] OO O|O| OIS
] | |||l
|l vlv|lvu|lv|v|nln
A Al Al Alal Al ala
Hl o ul o uf s slolo|lolo|lo
Ol a|l vl o
ol ]| ol wlnln|lo|lo|in|a
IR I I T = e
oflwjo| v ~lo|lo{~|a|o
4 I3 S B B Bt Bl Bl Y B
Hlojo|l ~n[vlol~lold|a
winln|m|n]lh|e|nlin|o
njoi~lolo|lo|ln|loi~|o
1 S DS B B et B Bl Y Bt
olololwlolsr|lalnjol|o
F|o|jafAa|la|o|en|on]a|T
olo|olociojolo|ole]|
alels|ataln|ntelel,
1 Bt Y S S et B Bl
Ol M|l ] w|[n]~|aalalm
e =]
olo|lo|lwlAlal~loln|~
ol HAlN|lN|N]olni~io ]|
ol H|lo|ls|a]o]~]cnlo|in
ool w|in]ola]]v]l~]|o
IR R R IR = R S
= = =1 =i
w|lo|l~|o|lo|-]la]lolo|w
gl n]lala|olnlS]d]n Ia
mlololo|rmllo|alo|n
]~ AR Y
afafe|al«~~n|a]n]=], o
I = I I A B H
afoloalNlnli~|alo|~] 3 3
Al |8 |[Q] 5 o
o @
H H
3] ]
ol e ol g %
slola]|lolololelololo]E vilglolololololole | Bl e v ioclololc oo |©
~lw|o|lo|o|lolale|a]ls Alo|cloloilolclele]l 8]l Hloieicoloic e lo ]l
Al |a]IF RS0 ]= Al {a g v jo o | 5 AR [@ lF |n e |8

47




H d g Z aN S 299 154 0°Z€T | €706 = - L0 9°0 g 9z 5009
M d q [4 aN S 1959 0z B €ET | 2°T6 0 10 2°0 S0 1°€ [ 009
M d g 4 aN S 199 8T 0°€ET | 2°T6 0 1°0 €°0 7°0 1°2 1°2 00§
Ji d q 14 aN S 129 07 LowET | £°T6 0 S0°0 %°0 €°0 0°¢ 0°¢ 00%
M d € T aN S 190 114 T°%€T [ 0°88 a S0°0> €°0 20 z°9 144 00¢
M d q T aN S 19D 6T 8*HET | T°T6 0 <0 0> €°0 10 €'z 8T 00z
M d q T aN 8 190 0z T'GET | 8°T6 .0 S0°0> %°0 0 8T 91 00T
M d q T an S 1971 6T YoLET [ L°%6 0 S0°0> L0 T°0 ST ST %9
- = - an aN S 191 1z 8'GET | ¥°€6 0 S0°0> €°0 0°0 T°T 0°'T 9T
- - = an an S 19T 22 T'9LT | T°l6 0 00> €°0 00 S0 L0 2
41,0087 e@anieisdus]
#“ d € T an S 9T (124 0°SET | 2°C6 - T°0> %0 0 8T ST 2009
M d g T an S 191 0z T*SET | ¢°C6 0 T°0> 70 2°0 T AN 009
i d q T an S 191 6T 8°9¢T | 6°G6 0 S0°0> %0 20 ST €T 00§
- - - aN aN S 191 6T 7 GET | 6°€6 0 S0°0> z°0 (V] 7T €T 00
- - - an an S 191 1¢ 0°9€T | L°€6 0 600> Z2°0 00 €T T 00¢
- - - aN aN S 19T (114 €°9€T | 0°v6 0 €0°0> 2°0 00 L0 870 002
- - - an an S 191 07 €°9€T | T°96 0 S0°0> z°0 0°0 6°T 8°0 00T
- - - anN an S 91 07 L°€ET | B°C6 0 S0°0> 0°0 00 9°0 90 Y9
- - - an an S 197 6T 0°ZET | #°06 0. 00> 00 0°0 9°0 70 91
- = - an an S 191 61 C°TET | 9716 0 00> z°0 0°06 - €70 k4
d,009T ®anjeaadue],
- - - an an S 191 1z L*TET | 0°T6 - - 20 T°0 S0 0°T [°009
- - - N an S D1 6T G'EET | 8°06 0 S0°0> S0 0°0 0°T 6°0 009
- - - N an S a1 LT T'TET | 8°¥8 0 S0°0> 20 00 8°'0 6°0 00¢s
- - - N an S 191 6T G°9ET | L°%6 0 S0°0> 20 0°0 S0 60 00%
- - - an aN S 191 8T C'9ET | 9°G6 0 500> z°0 0°0 90 8°0 00¢
- - - an aN S 191 8T 6°0ET | 6°88 0 $0°0> 9°0 1°0 €°0 80 00¢
- - - an an S 191 02 8°€eT | %°T6 0 §0°0> fAN] 0°0 - S*0 00T
- - - an an S 231 0¢ 7'CCT | 6°06 0 600> 0 0°0 = 9°0 %9
- - - an an S 91 6T CTIET | 9706 0 00> 00 0'c | ¢€°0 %°0 9T
- - - an an S a1 0z 8'CET | T°T6 0 S0°0> 0°0 00 €°0 €°0 ki
d4,00%T @inieaddusy

T1vds /

dT4LS TVIIN

/ SE114Id08d TvoINvEDER /.

HONVHO SSANMOIHL % NIVD IHOIAM \

*ROIKOYHD-TMIDIN I ‘€ A0TIV

:NOIIVINGVI VIVd TIVOIYIWAN

£-1IV T'T4VL

48



TIVds

/ aTYLS TVLER

/ siiiuadosd voinveomt /

JONVHO SSANMOIHL ¥ NIVD IHOIHM

*HNINOYHO~TMIDIN dI ‘€ AO0TIV

SNOILVINGVI VIVA TVOIYIWAN

€-1IV TT18VL

R N a z a as 99 0z |o'Ter | vy | - - A N - |og- |3009
A " g z ax as 199 61 | oter | vos| o to | 200 | 6T - o | 009
u 4 q T an as 199 81 SUTET | ygg 0 L0 6°0 LAk v'g |0/~ 00s
M a g 1 an das 199 8t 9261 | €62 0 L°0 6°0 €1 6°9 | 0°9- 00y
M d a z an as 199 81 T°2€T 6°18 0 - 80 6°T 6°9T1 | £°1- 00¢
M a q z ax s 199 €T STTET | ¢rgl 0 - 6°0 [ 6°TT | z'0~ 00z
u 4 g z an as 199 61 8'€ET | ,°88 0 - 6°0 e vr |9z 00T
# d g T an s 99 91 0°SET | 9°08 0 z°0 9°0 €T 0°s | zg 79
M a a T an ds 199 8T 0°HeT S*LL 0 170 9°0 MY 0°Y S'€ 9T
u 1 a 1 an as 199 81 8'9eT | T1°88 0 1°0 9°0 9°0 v'e | 1°¢ 4
I, 00¢¢ @anjerodusy
u d € € an ds 199 81 0°9€T | v'6g = - 9°0 81 89 |91 2009
M a g Z a as 199 61 S IET | 4°gg 0 £°0 €°0 0°8 L O 009
f d q € a s 199 61 6°2ET | ¢*/g 0 £°0 $°0 51 8'z 6" 00s
i} d g Z ax as 199 6T S°EET 7°98- 0 €0 S0 9°0 T°T 9°0 00%
4 a g z an as 199 81 L'ZET | T°9g 0 €0 L0 0°I S'y | L2 00€
M d g 4 aN ds 159 6T 1°€€T 181 0 €°0 S0 9°0 9°¢ 0°Z 002
# a g 4 an s 199 ST 0'TET | 698 0 - 570 L0 vy | Ty 00t
M d g 4 an as 199 8T Z°0€T 0°/8 0 z°0 G0 9°0 9°€ 0y 79
M d g 4 an ds 99 6T 0°EET [AFA:] 0 z°0 7°0 z°0 0°€E [ 9T
M d g T an s 199 8T 0°Z€T 0°¢8 0 T°0 z°0 1°0 €T 1'2 i
a,00T2 sanjea=duay,
n a q £ a s 199 0z 0°TET | 2°68 - - §°0 12 97 | 7€ [°009
n d g € an s 199 61 0"1ET | 0°88 0 20 S0 Sy 6°T | z°¢ 009
M d € € an s 199 TZ £°2ET 7°68 0 ST°0 $°0 1€ €9 (i 008
" d it 3 aN s 199 0z 8'TET | 9768 0 ST°0 70 0°Z 0y | s'¢ 00
M d 4 ¢ a s 199 0z | eter| s8] o lsto | g0 | o1 | 6% [og [ ooe
" a a 4 an 5 199 (44 0'zeT | 5'68 0 1°0 v0 L0 E'E | O€ 90z
M d g z an S 199 0¢ 0°€CT 7°06 0 T°0 L*0 S0 G€ 1€ 001
z d g 4 a 5 199 T2 6°ICT | 968 0 1°0 €0 6°0 - 0°¢ %9
# a g T an 5 199 0z 8°2€T | %06 0 10 20 o 0'c | LT 9t
n a q T an S a9 1z 9°z6T | #'06 0 $0°0 z°0 1°0 €T | 2T v
To000¢ Sinjeiadiisy
v
@w%w% &
SEE §
Mui% &&

49



SPALL

"
B
e N
1
ale
= b
a1a
- |3
<8
3
3
2N
2
[
se E
g\
Hﬂu
L]
H
2 |;
é\
A
:
:
5

WEIGHT GAIN & THICKNESS CHANGE

TABLE Al-4

50

Temperature 1600°F (No 1400°F series)
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METAL STRIP

ALLOY 5, CHROMEL A.
/ MECHANTCAL PROPERTIES /

NUMERICAL DATA TABULATION:

TABLE Al-5
WETGHT GATN & THICKNESS CHANGE
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: ALLOY 5, CHROMEL A.

NUMERICAL DATA TABULATION

TABLE Al-5
WEIGHT GAIN & THICKNESS CHANGE

SPALL

/

METAL STRIP

/ MECHANICAL PROPERTIES /

Temperature 2000°F
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SPALL

/

ALLOY 6, DH 242.
METAL STRIP

/ MECHANTCAL PROPERTIES /

NUMERICAL DATA TABULATION:

TABLE Al-6

WEIGHT GAIN & THICKNESS CHANGE
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Temperature 1400°F
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NUMERICAL DATA TABULATION: ALLOY 6, DH 242.

TABLE Al-6

WEIGHT GAIN & THICKNESS CHANGE

SPALL

/

METAL STRIP

/ MECHANICAL PROPERTIES/

Temperature 2000°F
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ALLOY 7, GE 1541.

NUMERICAL DATA TABULATION:

TABLE Al-7

WEIGHT GAIN & THICKNESS CHANGE

SPALL

/

METAL STRIP

/ MECHANICAL PROPERTIES /
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ALLOY 7, GE 1541.

NUMERICAL DATA TABULATION:

TABLE Al-7

WEIGHT GAIN & THICKNESS CHANGE

SPALL

/

METAL STRIP

/ MECEANICAL PROPERTIES /

Temperature 2000°F
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SPALL

/

ALLOY 8, HOSKINS 875.
METAL STRIP

/ MECHANICAL PROPERTIES /

NUMERICAL DATA TABULATION:

WEIGHT GAIN & THICKNESS CHANGE

TABLE Al-8
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: ALLOY 8, HOSKINS 875.

NUMERICAL DATA TABULATION

TABLE Al-8
WEIGHT GAIN & THICKNESS CHANGE

SPALL

/

METAL STRIP

/ 'MECHANICAL PROPERTIES /

Temperature 2000°F
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SPALL

ALLOY 9, RA 333.
METAL STRIP /

.
.

/ MECHANICAL PROPERTIES /
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NUMERICAL DATA TABULATION: ALLOY 9, RA 333.

TABLE Al-9
WEIGHT GAIN & THICKNESS CHANGE

SPALL -

/

METAL STRIP

/ MECHANICAL PROPERTTES /
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Temperature 2000°F
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Temperature
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ALLOY 10, HASTELLOY X.

NUMERICAL DATA TABULATION:

TABLE Al-10

SPALL

/

METAL STRIP

/ MECHANICAL PROPERTIES /

3

WEIGHT GAIN & THICKNESS CHANGE
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ALLOY 10, HASTELLOY X.

NUMERICAL DATA TABULATION

TABLE Al-10
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/

METAL STRIP

/ MECHANICAL PROPERTIES /

WEIGHT GAIN & THICKNESS CHANGE
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Selected photomicrographs®and photomacrographs for each alloy are
duced with explanatory captions to demonstrate:

1. As-received microstructure
2. Sintered microstructure
3. Electron beam weld zone structure

4, Surface oxide appearance

%%

5. Oxide thickness and penetration
6. Oxidized microstructure

N ,
All photographs are reproduced at the magnifications indicated.
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Photographs of surface oxides are shown for 1800°F exposure only (except

2200°F for Alloy 3).

Surface appearance at other temperatures is described

in the captions, but not shown.
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carbides

1600°F
heavier precipitate, twinning
1800°F
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As-received: fine resolved (2) Sintered: 1little change. 500X
precipitate with probability of
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(3) Electron beam weld: some (4) Surface oxides: 1400°F, 1800°F,
agglomeration of dispersion, 2000°F, 2100°F, adherent; 2200°F,
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Figure A4-12 Oxidation penetration plot: Alloy 12, Haynes 25.
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Ultimate strength, yield strength (0.2% offset), and percentage elongation
are shown for each alloy and test temperature at 100 hours and 600 hours exposure
time. Additional tensile tests show comparative mechanical properties for
"as-received," "as-sintered," and electron beam welded specimens.
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Figure A5-1 Tensile test.data plot: Alloy 1, N 155.
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Figure A5~2 Tensile test data plot: Alloy 2, TD nickel.
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Figure A5-3 Tensile test data plot:_ Alloy 3, TD nickel-chromium.
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Figure A5-4  Tensile test data plot: Alloy 4, Bendel 65-35.
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Figure A5-5 Tensile test data plot: Alloy 5, Chromel A.
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Figure A5-6 Tensile test data plot: Alloy 6, DH 242.
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Figure A5-7 Tensile test data plot: Alloy 7, GE 1541.
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Figure A5-8 Tensile test data plot: Alloy 8, Hoskins 875.

139



150x% 103
o]
2 US ¢
' § l\ﬁx\i> QY/ﬁ
7] o )\O 0
a B
@ 4 |
50 d 50 £
) lro;s ;:5)/” — 1o 8
Aok A —2 430 §
] <
20 5
—10 o
Q Qo O [«] [] [«]
s -
cf, $ESEEF FEEEE g
‘nu c/)i?_-' (% [\Y N - N N
Qu 9z o I00 HRS 600 HRS
Figure A5-9 Tensile test data plot: Alloy 9, RA 333.
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Figure A5-10 Tensile test data plot: Alloy 10, Hastelloy X.
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Figure A5-11 Tensile test data-plot: Alloy 11, Udimet 500.
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Figure A5-12 Tensile test data plot: Alloy 12, Haynes 25,
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